Background Multi-Rate LMS Calibration Circuit for 15MHz-BW 74dB-DR CT 2-2 MASH ΔΣ ADC in 28 nm CMOS

FEBRUARY 19, 2020 RENESAS ELECTRONICS CORPORATION

ISSUES OF CONVENTIONAL MULTI-STAGE $\Delta\Sigma$ CONVERTER

A multi-stage $\Delta\Sigma$ converter is extremely stable against excessive input, but has issues achieving higher precision.

RENESAS

BIG IDEAS FOR EVERY SPACE

NEW TECHNOLOGY DESCRIPTION

(1) Technology using LMS algorithm to measure and calibrate the transfer function of a continuous-time ΔΣ modulator

To enhance precision of a multi-stage $\Delta\Sigma$ converter, a new circuit technology is developed to enable background digital calibration.

NEW TECHNOLOGY DESCRIPTION

(2) World's first multi-rate LMS search algorithm that enables smaller circuit scale and low power consumption

The issues of the LMS algorithm were the increasing operating current and logic scale. The post-conditioner enables the reduction of the number of taps for LMS engine and FIR filter, and also drastically lowers the operating frequency.

RENESAS

BIG IDEAS FOR EVERY SPACE

NEW TECHNOLOGY DESCRIPTION

(2) World's first multi-rate LMS search algorithm that enables smaller circuit scale and low power consumption

This new technology enables the reduction of operating frequency (lower power) and a smaller number of digital filter taps (smaller logical scale).

A post-conditioner enables removing peaking caused by lack of gain-bandwidth product for an amplifier circuit, and thus reduces the number of FIR filter taps from over 100 to 28. Also, by decimating the FIR filter operating frequency to one-fourth of the previous situation, the number of FIR filter taps can be reduced to 10.

BIG IDEAS FOR EVERY SP

TEST CHIP RESULTS

- 1. The test chip was fabricated in 28 nm process.
- 2. Performance variations were held under 1dB by optimally adjusting FIR digital filters against temperature changes.
- After digital calibration, achieved signal bandwidth of 15 MHz and dynamic range of 74.3 dB

SNDR Temperature Dependency and FIR Filter Coefficient Value

TEST CHIP PERFORMANCE SUMMARY

Test Chip Specifications

		This Result
Process (nm)		28
Oversampling Frequency (MHz)		480
Signal Bandwidth (MHz)		15
Dynamic Range (dB)		74.3
Power-supply Voltage	Analog (A)/ Digital (D)	1.1/1.0
Power (mW)	A/D	19 / 18
Area (mm ²)	A / D	0.28 / 0.13

