EMBEDDED TARGET FOR RH850 MULTICORE

RHB

JUNE 14, 2018 AUTOMOTIVE SOLUTION BUSINESS UNIT SHARED R&D DIVISION 1

RENESAS RHB50

RHESAS

RENESAS V-MODEL SOFTWARE DEVELOPMENT SOLUTIONS

ISSUES REGARDING V-MODEL FOR MANUFACTURING

On the left side of the V-model, information on semiconductor assets are not used. Therefore frequent bugs and gaps will be discovered on the right side of the V-model

→ For software development as an example, problems found after implementation where execution performance could not be achieved

RENESAS

BIG IDEAS FOR EVERY SPA

BACKGROUND OF SOFTWARE DESIGN FOR COMPLEX PRODUCTS

Increased demands of MCUs for large-scale software → Necessity of multicore MCUs and efficient software development environment

a smartphone.

This is expected to increase with the rise of automatic driving.

RENESAS **BIG IDEAS FOR EVERY SPACE**

ISSUES OF CONVENTIONAL MULTICORE SOFTWARE DEVELOPMENT

Method up to now could not obtain correct multicore function estimate

BIG IDEAS FOR EVERY SPACE

HOW TO ESTIMATE MULTICORE SOFTWARE PERFORMANCE

In order for customer design teams to come up with a accurate estimate it takes lots of time and knowledge. These include knowledge of the system, software, semiconductor and 3rd party tools usage.

SOLUTIONS TO SOLVE ISSUES OF MULTICORE SW DEVELOPMENT

Solution Requirements			
Co-simulation with MBD tools(MATLAB/Simulink)	Automatic assignment plan by Model-based parallelization tool	Automatic generation of multicore code for target MCU	Detailed analysis environment by high accuracy MCU simulator
Consideration of system behavior including outside MCU can be clarified	Users can generate and execute multicore software from models without difficult tool setup and without being conscious of software implementation		Be able to evaluate the actual operation on multicore MCUs

Strong support for multicore software design with MBD "Renesas Embedded Target for RH850 multicore"

TECHNOLOGY: MODEL-BASE AUTOMATIC PARALLELIZATION

Automatic parallelization based on dependency on model and execution time on microcontroller

Simulink® Model

Multicore assignment

MCU device information (Simulator or real-device)

Extraction of parallelism between blocks

Optimal parallelization

Acquire exact execution time of the block

RH850 MULTICORE MODEL-BASE DEVELOPMENT ENVIRONMENT COLLABORATION OF EMBEDDED TARGET FOR RH850 MULTICORE AND eSOL eMBP

EFFECTS OF MULTICORE MBD ENVIRONMENT

Acquire accurate estimate based on MCU information with multicore MBD environment : Reduce risk of rework

EXAMPLE OF MULTICORE MODEL-BASED ENVIRONMENT

Build multicore performance at the early stage of V model

 \rightarrow Proposal of new multicore development process

NEW TECHNOLOGY: SUPPORT FOR MULTIRATE

MULTICORE OPERATION OF MULTIRATE CONTROL FOR ENGINES

MULTIRATE CONTROL SYSTEM VERIFICATION NOW POSSIBLE

CONFORMS TO JMAAB CONTROL MODELING GUIDELINES FOR MODEL-BASED DEVELOPMENT

Existing customer assets (multirate model) can easily be applied in a format conforming to JMAAB control algorithm modeling guideline

 Example of standard Simulink multirate model configuration

Example of ECPILS-RH multirate model configuration

BIG IDEAS FOR EVERY SPACE

RENESAS

REFERENCE: JMAAB CONTROL MODELING GUIDELINE MULTIRATE CONTROL MODELING WITH ECPISL-RH ASSUMPTION

Following the JMAAB control modeling guideline recommendations, generate code using the **multirate-single** task method with control model type α (using schedule layer) as an assumption.

ROADMAP

ROADMAP OF EMBEDDED TARGET FOR RH850 MULTICORE

RENESAS

BIG IDEAS FOR EVERY SPACE

